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For diffusive motion in random media it is widely believed that the velocity 
autocorrelation function c(t) exhibits power law decay as time t ~  vo. We 
demonstrate that the decay of c(t) in quasiperiodic media can be arbitrarily 
slow within the class of integrable functions. For example, in d=  1 with a poten- 
tial V(x)= cos x + c o s  kx, there is a dense set of irrational k's such that the 
decay of c(k, t) is slower than 1/t (1 "~ for any ~ > 0. The irrationals producing 
such a slow decay of c(k, t) are very well approximated by rationals. 

KEY W O R D S :  Long-time tails; quasiperiodic media; velocity autocorrelation 
function; time-dependent transport coefficients; modulated structures. 

1. It has been noted (1 67 that the velocity autocorrelation function (VAF) 
for particle motion in a variety of random systems exhibits a power-law 
long-time tail. For example, it is argued in ref. 4 that the VAF c(t) for 
diffusion in stationary random media in Ed decays in time like 1/? 1 +a/2~ as 
t ~ co. In this paper we remark that for diffusion in certain quasiperiodic 
media, the VAF has no such universal law, be it algebraic, logarithmic, 
or whatever. In particular, for diffusion Xt in the drift field VV(x), where 
V(x) is a suitable quasiperiodic potential in Nd, the "VAF" c(t)= 
((VV(X0) .VV(Xt))) (where ( ( . ) )  denotes averaging over diffusion paths 
and the phase in the potential) exhibits decay which is arbitrarily slow 
within the class of integrable functions. Furthermore, our arguments 
indicate that the rate of decay depends on the Diophantine properties of 
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the irrational parameters which characterize the quasiperiodicity--the 
better the approximation by rationals, the slower the decay. We also obtain 
similar results for other transport coefficients. 

For example, in d = 1 with V(x) = cos x + cos kx, there is a dense set F 
of irrational k's for which the following statements hold. First, for k s F, the 
decay of c(k, t) is slower than 1/t (1+ ~) for any e > 0. Related to c(k, t) is the 
time-dependent diffusion coefficient @(k, t )=  ((X~))/t, which converges as 
t ~  ~ to .the effective diffusion coefficient D*. For k ~ F ,  I~(k, t ) - D * l  
decays to zero extremely slowly, for example, more slowly than 
1/log..- log t, for any fixed number of iterations of the logarithm. This is 
arbitrarily slow decay with no condition of integrability. The Laplace 
(Fourier) transform of the VAF corresponds to the frequency (~o)-depen- 
dent effective diffusivity D(o~) (conductivity a(c0)) of the medium. For 
k EF, ID(k, ~o)-D*l  decays to zero as 09--. 0 more slowly, for example, 
than 1/log--.log(I/co), for any fixed number of iterations of the logarithm. 
This situation markedly contrasts that in random media, ~4) where it is 
believed that I D ( ~ ) -  D*I ~ (Dd/2 as CO " - ~  0. In addition to the above quan- 
tities, we have also obtained similar results concerning the behavior near 
the origin of the spectral measure of VV for the (suitably defined) self- 
adjoint generator of the process. 

The above statements about rates of decay are actually easy con- 
sequences of much stronger results which we state in the body of the paper 
and have the following form. For example, in the one-dimensional case, 
there exists a dense set of k's such that c(k, t) ~ 0 more slowly than any 
positive function integrable on [0, Go) which is "expressible," i.e., that can 
be written down, either explicitly or implicitly. 

Our results are based on the discontinuous dependence of D* on the 
wavelengths of V, which was observed in ref. 7. For example, with V(x)--- 
cos x + cos kx in ~1, D*(k) has the same value/3 for all irrational k, but 
differs from /3 and depends on k for k rational, where it is thus discon- 
tinuous. Moreover, D*(k) is continuous at irrational k. This pathology is 
reflected in the behavior of ~(k,  t) [~t_~ ~ D*(k)] for irrational k that are 
well approximated by rationals k,.  In this case ~(k,  t) has "plateaus" 
around the values D*(kn). (7'8) The closer kn is to k (i.e., the closer the 
rational approximant), the longer the corresponding plateau. The existence 
of irrationals k for which ~(k,  t) decays arbitrarily slowly then follows 
easily. The behavior of D(k, co), e~ ~ O, arises in a similar manner. 

2. Let Xt be the position of a particle at time t diffusing in a medium with 
a bounded (sufficiently smooth) potential V according to 

dX, = - a o  VV(XI) + (2Do) v2 dW, (1) 



Decay of Correlations in Quasiperiodic Systems 1115 

where W t is standard Brownian motion, ( W~ W~) = 6ut, i, j = 1 ..... d, and 
a0 and Do are the "bare" mobility and diffusion constants. The density 
p(x, t) associated with (1) satisfies the diffusion equation 

Op/Ot = Do 3p + V .  (ao VVp) (2) 

which has the equilibrium density p, ,~exp(- f lV) ,  fl=ao/Do, as per the 
Einstein relation. With X 0 = 0, p(x, 0 ) =  6(x). 

It is known (9-11) that for V periodic, quadiperiodic, or stationary 
random ergodic, 

~,j(v, t)= (( x~xJ, }}/t ,-~ ~ , D*( V) (3) 

where D*(V) is a positive-definite effective diffusion tensor. [The actual 
trajectories are asymptotically Brownian with diffusion tensor D*(V).] 

Consider quasiperiodic V(x)= lg(xlkl + -.. + x a k a ) =  IT"(kx) in R e, 
where P is a smooth function on the unit n-torus T " =  ~"/7/~, which is 
equivalent to the unit n-cube with opposite faces identified; kl,..., ka are 
linearly independent vectors in ~"; and k = [kl,..., ka]. The potential V(x) 
can naturally be regarded as a member of a family Vk(x, 0) depending on 
phase 0 ~ T" defined by Vk(x, 0) = V(kx + 0). The matrix k defines a group 
action vx of Na on T n by v x 0 = 0 + k x .  This action leaves Lebesgue 
measure d0 invariant. It is also ergodic relative to dO when the equations 
ki" j = 0 ..... ka" j = 0 have no simultaneous integral solutions j e 7/". We say 
that k is "irrational" in this case and is "rational" otherwise. When n = 2, 
d =  1, and k = k = [kl ,  k2] r, such as for V(x) = cos k l x  + cos kzx, then k is 
irrational when k2/kl is irrational, and is rational when k2/kl is rational. 
When n > d +  1, k can have various "degrees" of rationality, depending on 
the dimension of the ergodic components of vx. 

Let Xt be the diffusion process associated with Vk(., 0). We shall be 
interested in the trace of the left side of (3). 

~(vk,  t)= ((x~, })/t (4) 

where ( ( . ) )  denotes averaging of the phase 0 over T" with weight 
,-~exp[-fl/~'(0)] (which defines the equilibrium measure on T"), as well as 
over Brownian motion paths W. ~(Vk, t) has the representation 

~(Vk, t)  = D * ( k )  + 1 , t loaS l, auc(u) (5) 
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where c ( t )=  ( ( V V ( X o ) . V V ( X t ) ) )  , D * ( k ) = t r [ D * ( k ) ] ,  a 0 = l ,  and D0--- �89 
in (1). We shall also be interested in (12) 

D(o~) = e -~ c(t) dt (6) 

3. In the statement of our results, we utilize the notion of an expressible 
function, i.e., one which can be defined, either explicitly or implicity, using 
standard mathematical symbols. An example of such an implicitly defined 
function is one that satisfies, say, a polynomial or integral equation which 
has a unique solution. Since any expressible function is determined by a 
finite string of symbols from a finite alphabet, there are only countably 
many such functions. (To make this notion completely precise, one should 
consider a formal language, but we do not wish to go into this here.) 

It is easy to see that ~(k,  t) is continuous in k and t >~ 0. Moreover, 
limt ~ ~ ~(k,  t) = D*(k) exists, with D*(k) having the discontinuity proper- 
ties described above. Now, it can be shown that any function with these 
properties exhibits arbitrarily slow decay. 

More precisely, for any two functions g(t) ~ld  h(t), we write 
g(t) >i.o. h(t) as t-~ ~ if there is a sequence t, ~ ~ sut:h that g(tn) > h(tn) 
for all n. The expression g >i.o h says that h does not d,,minate g, not even 
asymptotically (t ~ oo). Then: 

(*) If f (k ,  t) is any function continuous in kc-~ N and t e  [0, ~ ) ,  
with l i m t ~ o o f ( k , t ) = f ( k )  discontinuous for a dense set 
of k's, there is a dense set F c ~  ~ ~uch that for each 
k e F ,  [ f ( k , t ) - f ( k ) [ > i . o . g ( t )  for every expressible g with 
limt--, o~ g(t) = O. 

We may similarly define g(o)>~.o.h(~o) as ~ 0  and formulate an 
analogous result for a function f (k ,  ~)  with ~o ~ 0. 

The discontinuous nature of D*(k) arises as follows. In one dimension, 
there is an exact formula (see, e.g., ref. 7) for D*. In the example Vk(x)= 
(Z(x, kx), l~(x, y) = cos x + cos y, this formula involves integrations of 
functions of 12 on T 2 over a trajectory of the flow (0~ 02) = (1, k), which is 
ergodic only when k is irrational. In this case, the integration is over all of 
T 2. However, when k is rational, the trajectory degenerates to a closed 
orbit, over which the integrals are different from their values over all of T 2, 
which is the source of the discontinuity. 

There is no such general argument in higher dimensions d>~ 2, where 
an explicit formula for D*(k) is absent. Nevertheless, we believe for the 
following reasons that, as in one dimension, there is typically a dense set of 
k's in ~N at which D*(k) is discontinuous. First, as argued in ref. 7, the 
integrals involved in representation formulas for D* suffer the same 
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"discontinuity" in the domain of integration, caused by the breakdown of 
ergodicity for rational k, as in one dimension. It would thus be surprising if 
the discontinuous behavior of D*(k) is not generic. Second, in addition to 
the specific examples of the discontinuity provided in ref. 7, we constructed 
in ref. 8 a whole class of two-component media for which the effective 
conductivity o*(k) is discontinuous. Henceforth, we shall consider only 
quasiperiodic potentials in Nd, d~> 1, generated by V which are "typical," 
i.e., for which O*(k) is discontinuous on a dense set in R u. 

Let P on T" be typical. Then from the previous discussion we may 
conclude that there is a dense set F of k's having the following properties: 

(i) For any k e F ,  ~b(k, t )=  I~(k, t ) - D * ( k ) [  >i.o.g(t) for every 
positive, expressible g with lim,_ ~ g(t)  = O. 

(ii) For any k eF ,  c(k, t)>i.o, h(t)  for every positive, expressible h 
integrable on [0, oo). 

(iii) For any k e F ,  [D(k, og)-D*(k)[  >i.o. g(~o) for every positive, 
expressible g with lim,o _ o g(co) = 0. 

In order to state the last result about the spectral measure, let 
s = �89 --Vk V-Vk, where Vk is gradient arising from the action Vx of Ea on 
T n, and A k is the Laplacian corresponding to Vk. s is self-adjoint on 
L2(T n, dp), where p is the equilibrium measure on T n, and has negative 
spectrum contained in ( - ~ ,  0] with projection-valued measures P~ on 
(--oo, 0]. We consider the spectral measure of P~. in the state V k17", 
#(d2) = (Vk V. P(d2) Vk I?), where ( . )  here means integration over T" 
with respect to p. Using the semigroup exp(s  one can 
write 

i ~ c(t) = e "~' d#(2) (7) 
- - o O  

Now, for typical i~: 

(iv) For any keN,  #k(d2)>i.o. v(d2) as 2--* 0 for every expressible 
measure v on ( -  ~ ,  0] such that ~ o  v(dit)/l)q < ~ .  

[By # >i.o. v as 2-~ 0 we mean there is a sequence of intervals (t~, s,), 
t , - ,  0, such that #(t , ,  s , ) >  v(tn, s , )  for all n.] 

The logical relationship among our results is as follows: ( * ) ~  (i) 
(ii) ~ ( iv)and ( * ) ~  (iii). Properties ( i )and  (iii)are direct consequences of 
(*). Property (i) ~ (ii) because the failure of (ii) would provide, via (5), an 
expressible positive function dominating ~b(k, t). Similarly, using (7), 
(ii) ~ (iv). [The fact that the same set F is appropriate in (iii) and in (i), 
(ii), and (iv) follows from a slightly improved version of (*).] 

We remark that no contradiction is involved in (i)-(iv), even though, 
for example, ~b(k, t) in (i) satisfies lira, ~ ~ ~b(k, t) = 0 and ~b(k, t) >i.o. ~b(k, t) 
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is clearly false. The point is that the k in /~  are not expressible and there is 
therefore no reason why functions defined in terms of these k should be. 

To emphasize how slowly these functions decay, observe that, say for 
(i), ~b(k, t) >i.o. ( log . . - log  t)-~, t ~ ~ ,  for any fixed number of iterations of 
the logarithm. Indeed, no law, be it algebraic, logarithmic, or whatever, can 
capture the behavior of ~b(k, t), not even in the weak sense of upper 
bounds. 

While /" is dense, it is of Lebesgue measure zero, so that it is 
analytically "small." However, under a further assumption about D*(k), /" 
can be shown to be dense p~ set, i.e., it is a dense countable intersection of 
open sets, which is topologically "large." This assumption, which may be 
found in ref. 13, is typically true in one dimension, and is presumably true 
in higher dimensions. 

Detailed proofs of the results in this paper are given in ref. 13. 
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